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LEITER TO THE EDITOR 

Parafermions and surface exponents of self-dual Z ( N )  spin 
models from conformal invariance 

Francisco C Alcaraz 
Departamento de Fisica, Universidade Federal de Si0 Carlos, CP676, 13560 SHo Carlos, 
SP, Brazil 

Received 24 February 1987 

Abstract. We study the critical behaviour of a family of self-dual two-dimensional spin 
models with Z (  N )  symmetry ( N  S 8)  in its Hamiltonian formulation. Using the relations 
between the mass-gap amplitudes of the Hamiltonian in a finite strip and the critical 
exponents we estimate the anomalous dimensions of the parafermions occurring in the 
underlying field theory as well as the surface exponents. 

In the past few years much attention has been devoted to the study of two-dimensional 
Z( N )  spin systems, firstly because they are non-trivial generalisations of the Ising 
model (Domany and Riedel 1979, Alcaraz and Koberle 1980, Cardy 1980) and secondly 
because of their similarity to four-dimensional Z( N )  gauge systems (Fradkin and 
Susskind 1978, Elitzur et a1 1979, Kogut 1979, Creutz et a f  1979, Alcaraz and Koberle 
1981). These spin models are self-dual and for N 3 5 they exhibit a soft phase which 
is the precursor of the disordered Gaussian-like phase of the planar X Y  model. 

Fateev and Zamolodchikov (1982) obtained a special family of Z (  N )  models which 
is exactly soluble at its self-dual point. The free energy was obtained by solving the 
associated star-triangle equations (Baxter 1982). The one-dimensional quantum 
Hamiltonian H N  associated with these models was derived recently (Alcaraz and Lima 
Santos 1986) and is given by 

L N - l  

H N  = - C C { [ S "  ( k)Sf"  (k  + 1) + R n  (k)]/sin( .rm/ N ) }  (1) 
k = l  n = l  

where S ( k )  and R ( k )  are N x N matrices defined at the lattice sites 1 S k s  L and 
obey the Z (  N )  algebra 

[ S ( k ) ,  R(l )1= [S(k) ,  S ( U l =  [R(k) ,  R(U1 = O  

S ( k ) R ( k )  = e x p ( i 2 a / N ) R ( k ) S ( k )  

k f l  

R N ( k )  = S N ( k )  = 1. 

Zamolodchikov and Fateev (1985) constructed a set of (1 + 1)-dimensional field 
theories with the properties of Z( N )  invariance and self-duality like the above statistical 
models. These theories are the natural candidates for the underlying field theories 
governing the critical behaviour of the above statistical models. These theories are 
conformally invariant with their central charge, or conformal anomaly, of their Virasoro 
algebra given by 

(2) c = 2( N - 1)/(  N + 2 ) .  
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From their conformal algebra the predicted values of the scaling dimensions associated 
with the ( N  - 1)-order or disordered ( Z (  N )  charged) operators of the statistical model 
are 

2d, = n ( N  - n)/ N( N + 2 )  n = 1,2, . . . , N - 1 (3 )  

while the scaling dimensions associated with the N-thermal (Z (  N )  neutral) operators 
are 

2 0 ,  = 2 n ( n + 1 )/ ( N + 2) n = 1,2, . . . , R (4) 

where N is the integer part of N/2.  These theories also predicted the existence of 
parafermions with spin s and anomalous dimension Xpf(s, n)  given by 

S = l (  N - n - l ) /N 

and 

Xpf( s, n )  = 2 d ,  + s I = O ,  1 , 2 , .  . . , N - n  ( 5 )  

s = l (  N - I ) /  N XPF(s, n ) = 2 d , + s  (6) 

where d,(n = 1,2 , .  . . , N - 1) is given by (3). For N = 2,3 these models correspond 
to the critical Ising and three-state Potts models, for N = 4 it is a particular point of 
the quantum Ashkin-Teller model (Kohmoto et a1 1981) and for N > 4  the above 
dimensions correspond to the exponents of the antiferromagnetic critical point of the 
RSOS model (Andrews et a1 1984, Huse 1984). 

In previous publications (Alcaraz 1986, 1987) by calculating the spectrum of the 
associated Hamiltonian (1) in a finite lattice with periodic boundary conditions and 
exploring the consequences of the conformal symmetry of the infinite critical system 
(Cardy 1986b) we verified with good precision the predictions 2.1-2.3 for N S 8 .  In 
this letter the mass-gap amplitudes will be used in order to calculate the anomalous 
dimensions of the parafermions occurring in the model as well the several possible 
surface exponents associated with (1). We shall consider the Hamiltonian (1) with 
i-twisted boundary conditions 

S ( L + l )  =exp( i2m?/N)S( l )  i = O ,  1 , 2 , , .  . , N - 1  

n' = 0 corresponding to the periodic case, and free boundary conditions, S (  L +  I ) = 0, 
imposed. The Hamiltonian (1) commutes with the Z( N)-charge operator 

L 

e x p ( i 2 ~ Q /  N )  = n R ( k )  
k = l  

and consequently in the R basis it can be block separated N-disjoint sectors labelled 
by Q = n = 0,1,2, . . . , N - 1. In the case of twisted boundary conditions, these blocks 
can be further block diagonalised according to their momentum?, while in the case of 
free ends these sectors can be further block separated in two sectors according to the 
parity under reflexion of the lattice. In the following let us denote by EA"(k, r )  
( r  =0,  1 ,2 , .  . .) the r-excited state with momentum k in the sector Q = n of the 
Hamiltonian (1) with i-twisted boundary conditions imposed. In the case of free ends 
we denote by ELE'( r, p )  ( r  = 0, 1, 2, . . . ; p = *) the r-excited state with parity p in the 
sector with charge Q = n. 

t See, for example, yon Gehlen and Rittenberg (1986) for a proper definition of momentum in the case ri # 0. 
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The conformal invariance at criticality of the infinite statistical model produces 
many important implications in two dimensions (see Cardy 1986b for a review). 
Specifically, Cardy (1984a, 1986a, b) has derived a set of important relations between 
the mass-gap amplitudes of the transfer matrix (or associated Hamiltonian) of the 
statistical system in a finite strip and the anomalous dimension of the operators 
describing the critical behaviour of the infinite system. Let us initially concentrate on 
the evaluation of the scaling dimensions XL‘) of the parafermionic operator (Fradkin 
and Kadanoff 1980) with spin nG/ N .  These dimensions, in the Hamiltonian formalism, 
can be obtained by extrapolating (L-,co) the sequence (Cardy 1986b, von Gehlen et 
a1 1986) 

x:”(L) = L [ J p ( O ,  0) - E p ( O , 0 ) ] / 2 P [  n , n ’ = l , 2  ,..., N - 1 .  (7) 

The constant 5 is unity in the transfer matrix (Euclidean) formalism but is model 
dependent for Hamiltonians (Alcaraz and Drugowich de Felicio 1984, von Gehlen et 
a1 1986). This constant can be extracted in several ways, for example by extrapolating 
the sequences 

[ ( L ) =  L[E‘,0’(2.rr/L,O)-E‘,0’(0,0)]/2rr n Z 0 .  (8) 

For the Hamiltonian (1) previous numerical analysis (Alcaraz 1986, 1987) indicates 
the conjecture that [ = N. This value will be assumed hereafter. 

In table 1 we present for Z(5),  Z(6), Z(7)  and Z(8)  the extrapolated values of the 
sequences (7) corresponding to several parafermions occurring in the model described 
by (1). All the numerical calculations of eigenenergies in this letter were performed 
by using the Lanczos method (Roomany et a1 1980, Hamer and Barber 1981a, b). The 
extrapolated values quoted in table 1 were obtained by using the alternate E algorithm 
(Hamer and Barber 1981b) for lattice sizes up to L = 9, 8, 7 and 7 for N = 5, 6, 7 and 

Table 1. Extrapolated and conjectured results for the scaling dimensions X;,” of the 
parafermions with spin nn‘/N for the Z(  N) (N = 5-8) systems. The conjectured values 
denoted by * and + are ( N  - 1 )/ N and 2, respectively, and the remaining ones are given 
by (4) and (5). 

Z ( 5 )  Z ( 6 )  Z ( 7 )  Z(8)  

X;’’ Extrapolated 0.372 * 0.001 0.335 * 0.002 0.3041 0.003 0.278 * 0.005 

X i ’ )  Extrapolated 0.5713 * 0.0003 0.5209 * 0.0003 0.479 * 0.001 0.440* 0.002 

X i ”  Extrapolated 0.7144 * 0.0004 0.6660 * 0.0005 0.619 * 0.001 0.575 * 0.001 

X y  ’ Extrapolated 0.8001 * 0.0004 0.7703 * 0.0005 0.729 * 0.002 0.6875 * 0.0005 

Conjectured 0.371 4 2 8 . .  . 0.333 333. .  . 0.301 587. .  . 0.275 

Conjectured 0.571 428 . .  . 0.520 833. .  . 0.476 190. .  . 0.4375 

Conjectured 0.714 285 . .  . 0.666 666. . . 0.619 047 . . . 0.575 

Conjectured 0.8* 0.770 833, , . 0.730 158. .  . 0.6875 

Conjectured - 0.8333 333. .  .* 0.809 523. .  . 0.775 
X i ’ ’  Extrapolated - 0.835 * 0.004 0.805 * 0.005 0.774 * 0.003 

X i ”  Extrapolated - - 0.858 * 0.002 0.83 * 0.01 
- 0.857 142. .  .* 0.8375 

- - 0.875* 

Conjectured - 
X y ’  Extrapolated - 

Conjectured - 
- 0.876 1 0.005 - 

Xiz’  Extrapolated 0.9 1 4 * 0.00 1 0.833 f 0.002 0.761 * 0.002 0.703 1 0.005 
Conjectured 0.914 285 . .  . 0.833 333. .  . 0.761 904. . . 0.7 

Conjectured 1.2t - 1.015 873. .  . 0.9375 
1.01 io .02  0.94*0.01 Xi21 Extrapolated 1.200*0.002 - 
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8, respectively. The conjectured values in table 1 not marked with * or t are given by 
( 5 )  and (6). We can clearly see that agreement with the conjectured values is very 
good, which once more (Alcaraz 1986, 1987, Jimbo et a1 1986) indicates that the Z (  N )  
field theory of Zamolodchikov and Fateev (1985) is the underlying field theory describ- 
ing the criticality of these statistical systems. For N = 2, 3 and 4 the relations (2)-(5) 
were verified analytically and numerically (von Gehlen et a1 1986, Alcaraz et al 1987). 
Apart from parafermions with dimensions predicted by (4) and ( 5 )  our results also 

( N  - 1 ) /  N. These scaling dimensions are obtained by generating the zero-momentum 
state of the Hamiltonian (1) in the sector n = 1 and with n' = ( N  - 1)-twisted boundary 
conditions imposed. In table 1 we present these results together with the conjectured 
values denoted by *. Moreover, for the particular case of the Z(5) model, another 
non-predicted parafermion denoted by t in table 1 with spin and dimension X y '  = 2 
was also obtained. 

The surface exponents which govern the various correlations along the surface of 
the semi-infinite two-dimensional model can also be obtained by exploiting the confor- 
mal invariance of the infinite system. By conformally transforming a given a statistical 
model in the half-plane into a strip of size L a set of important relations have been 
derived (Cardy 1984a). In the Hamiltonian formalism these relations can be stated as 
follows. Corresponding to each surface exponent X ,  of the infinite system (Binder 
1983, Cardy 1986b) there exists, in the Hamiltonian with size L and free boundaries, 
a set of states with eigenenergies at the bulk critical point given by 

(9) 

indicate the presence of parafermions with spin ( N  - I ) /  N and dimension X : N - " '  - - 

E,( r )  = E,( L )  + v5( X ,  + r ) /  L + O( L- ' )  r = O ,  1,2  , . . . .  

The constant l =  N is the same as that occurring in ( 7 )  and Eo( L) is the ground-state 
energy of the finite chain. From the above relation we can identify each sector of the 
Hamiltonian (1) with free ends with a surface exponent Xi"2p' by extrapolating the 
sequences 

xp01 = [ELF'(O, p )  - EbF'(O, +)]L/vr5 
xgo,+'= -[EbF'(l, +)-EbF'(O, + ) ] L / v 5  

Xy.-l)= 

n = 1 , 2 ,  . . . ,  N - 1 ;  p = *  (10) 

(11) 

(12) 

where EAF' (0, +) is the ground state of the finite chain. In table 2 we present the 
extrapolated values of these sequences for the Z(5) ,  2(6) ,  Z(7) and Z ( 8 )  Hamiltonians 
by using lattice sizes up to L = 8,7, 7 and 6 respectively. We observe from these results 
that X ~ " ' - ' ( W )  =X6".+'(W)+l, implying that, for each charge n, the ground state in 
the positive (negative) parity sector corresponds to the first (second) state in the tower 
of states given by (9). Our numerical results indicate that, like the N = 2,3 and 4 cases 
(Cardy 1984b), the surface exponent Xi" = n/le'/2 corresponding to the energy operator 
is given by 

(13) 

and the surface exponents corresponding to the two-point correlations of the ( N -  
1)th-order parameters Xl"' = 771,")/2 are given by 

[EbF'(O, -1) - EbF'(0, +)]L/n5 

xi" = X:o.+'(W) = 2 

n = l , 2  , . . . ,  N - 1 .  
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Table 2. Extrapolated and conjectured results for the surface exponents X!’’.”’ for the 
Z( N )  ( N  = 5-8) systems. The conjectured values are given by (13) and (14). 

Extrapolated 
Conjectured 
Extrapolated 
Conjectured 
Extrapolated 
Conjectured 
Extrapolated 
Conjectured 
Extrapolated 
Conjectured 
Extrapolated 
Conjectured 
Extrapolated 
Conjectured 
Extrapolated 
Conjectured 
Extrapolated 
Conjectured 

2.000 * 0.001 
2.0 
3.00 * 0.02 
3.0 
0.797 * 0.004 
0.8 
1.798 * 0.002 
1.8 
1.203 0.004 
1.2 
2.206 1 0.002 
2.2 
1.203 r0.004 
1.2 
2.206 1 0.002 
2.2 
0.797 * 0.04 
0.8 

2.00 * 0.01 
2.0 
2.99 * 0.01 
3.0 
0.83 1 0.01 
0.8333. .  . 
1.83 * 0.01 
1.8333. .  . 
1.33 * 0.01 
1.3333.. . 
2.35 * 0.02 
2.3333. .  . 
1 S O  * 0.01 
1.5 
2.55 * 0.04 
2.5 
1.33 * 0.01 
1.3333.. . 

2.00 * 0.02 
2.0 
3.00*0.03 
3.0 
0.85 * 0.01 
0.8571 . . . 
1.85 10.01 
1.8571.. . 
1.42*0.01 
1.4285.. . 
2.45 * 0.03 
2.4285.. . 
1.71 ~ 0 . 0 1  
1.7142. .  . 
2.78 1 0.05 
2.7142.. . 
1.71 i-0.01 
1.7142. .  . 

2.01 r 0.03 
2.0 
3.00r0.03 
3 .O 
0.86r0.01 
0.875 
1.86r0.03 
1.875 
1.50r0.03 
1.5 
2.58 * 0.05 
2.5 
1.88 * 0.03 
1.875 

2.875 
1.99 r 0.03 
2.0 

- 

The conjectured values quoted in table 2 are those predicted by (13) and (14). I t  is 
interesting to observe that (14) is a particular case of the more general relation 
X?’ = 4X(,O)/X(,e) between the surface exponent X;”’  of an order parameter, its scaling 
dimension X(,O’ and the scaling dimension X(,e) ( n  = 1 in (3)) of the energy operator 
in the bulk system. This last relation can be verified for the q S 4 state Potts, Ashkin- 
Teller and O( N )  models. 

In summary, by exploiting the implications of the conformal invariance of the 
statistical system at criticality we have calculated, for the family of Hamiltonians ( 1) 
( N  = 5-8), the scaling dimensions of the parafermions and the surface exponents. 
Beyond the family of parafermions predicted by the Z ( N )  field theory of 
Zamolodchikov and Fateev (1985) (table 1) we have also obtained another family of 
parafermionic operators with spin and dimension ( N  - 1)/ N. Our numerical results 
for the surface exponents (table 2 )  strongly suggest the conjectures (13) and (14). 

It is a pleasure to acknowledge profitable discussions with M N Barber and M T 
Batchelor. This work was supported in part by Conselho Nacional de Desenvolvimento 
Cientifico e Tecnol6gico CNPq-Brasil. 
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